Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
从非稳定性数据流不断学习是过去几年中日益普及的具有挑战性的研究课题。能够在高效,有效和可扩展的方式中不断地学习,适应和推广,是人工智能系统可持续发展的基础。然而,以持续学习的代理为中心的视图需要直接学习原始数据,这限制了独立代理,效率和当前方法的隐私之间的相互作用。相反,我们认为,持续学习系统应该利用经过培训的模型的形式利用压缩信息的可用性。在本文中,我们介绍并将一个名为“EX-Modul持续学习”(EXML)的新范式介绍并形式化,其中代理从一系列先前培训的模型而不是原始数据学习。我们进一步贡献了三种前模型连续学习算法和包括三个数据集(Mnist,CiFar-10和Core50)的经验设置,以及所提出的算法广泛测试的八种情况。最后,我们突出了前模式范式的特点,我们指出了有趣的未来研究方向。
translated by 谷歌翻译
在不同的持续学习场景中可以经验经验评估模型的能力。每种情况都定义了限制和学习环境的机会。在这里,我们挑战了持续学习文学中的当前趋势,主要是在类渐进式场景上进行实验,其中一项经验中的课程从未被重新审视。我们对这种环境的过度注重可能是对持续学习的未来研究来限制,因为类增量场景人为地加剧了灾难性的遗忘,以牺牲其他重要目标等于前向传递和计算效率。在许多现实世界环境中,实际上,重复先前遇到的概念自然地发生,有助于软化对先前知识的破坏。我们倡导更深入地研究替代持续学习场景,其中重复通过传入信息流中的设计集成。从已经现有的提案开始,我们描述了这种级别的级别与重复方案的优势可以提供更全面的持续学习模型的评估。
translated by 谷歌翻译
Process monitoring and control are essential in modern industries for ensuring high quality standards and optimizing production performance. These technologies have a long history of application in production and have had numerous positive impacts, but also hold great potential when integrated with Industry 4.0 and advanced machine learning, particularly deep learning, solutions. However, in order to implement these solutions in production and enable widespread adoption, the scalability and transferability of deep learning methods have become a focus of research. While transfer learning has proven successful in many cases, particularly with computer vision and homogenous data inputs, it can be challenging to apply to heterogeneous data. Motivated by the need to transfer and standardize established processes to different, non-identical environments and by the challenge of adapting to heterogeneous data representations, this work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach. DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data, and enables the transfer and scalability of deep learning-based statistical control methods in a general manner. Additionally, the cyclic interactions between the different parts of the model enable DBACS to not only adapt to the domains, but also match them. To the best of our knowledge, DBACS is the first deep learning approach to combine adaptation and matching for heterogeneous data settings. For comparison, this work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations by mapping data into correlated latent feature spaces. Finally, DBACS with its ability to adapt and match, is applied to a virtual metrology use case for an etching process run on different machine types in semiconductor manufacturing.
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Aliasing is a highly important concept in signal processing, as careful consideration of resolution changes is essential in ensuring transmission and processing quality of audio, image, and video. Despite this, up until recently aliasing has received very little consideration in Deep Learning, with all common architectures carelessly sub-sampling without considering aliasing effects. In this work, we investigate the hypothesis that the existence of adversarial perturbations is due in part to aliasing in neural networks. Our ultimate goal is to increase robustness against adversarial attacks using explainable, non-trained, structural changes only, derived from aliasing first principles. Our contributions are the following. First, we establish a sufficient condition for no aliasing for general image transformations. Next, we study sources of aliasing in common neural network layers, and derive simple modifications from first principles to eliminate or reduce it. Lastly, our experimental results show a solid link between anti-aliasing and adversarial attacks. Simply reducing aliasing already results in more robust classifiers, and combining anti-aliasing with robust training out-performs solo robust training on $L_2$ attacks with none or minimal losses in performance on $L_{\infty}$ attacks.
translated by 谷歌翻译
The problem of generating an optimal coalition structure for a given coalition game of rational agents is to find a partition that maximizes their social welfare and is known to be NP-hard. This paper proposes GCS-Q, a novel quantum-supported solution for Induced Subgraph Games (ISGs) in coalition structure generation. GCS-Q starts by considering the grand coalition as initial coalition structure and proceeds by iteratively splitting the coalitions into two nonempty subsets to obtain a coalition structure with a higher coalition value. In particular, given an $n$-agent ISG, the GCS-Q solves the optimal split problem $\mathcal{O} (n)$ times using a quantum annealing device, exploring $\mathcal{O}(2^n)$ partitions at each step. We show that GCS-Q outperforms the currently best classical solvers with its runtime in the order of $n^2$ and an expected worst-case approximation ratio of $93\%$ on standard benchmark datasets.
translated by 谷歌翻译
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
translated by 谷歌翻译